Nonconforming Mixed Finite Element Method for Nonlinear Hyperbolic Equations
نویسندگان
چکیده
منابع مشابه
Nonconforming Mixed Finite Element Method for Nonlinear Hyperbolic Equations
A nonconforming mixed finite element method for nonlinear hyperbolic equations is discussed. Existence and uniqueness of the solution to the discrete problem are proved. Priori estimates of optimal order are derived for both the displacement and the stress.
متن کاملNonconforming H-Galerkin Mixed Finite Element Method for Pseudo-Hyperbolic Equations
Based on H-Galerkin mixed finite element method with nonconforming quasi-Wilson element, a numerical approximate scheme is established for pseudo-hyperbolic equations under arbitrary quadrilateral meshes. The corresponding optimal order error estimate is derived by the interpolation technique instead of the generalized elliptic projection which is necessary for classical error estimates of fini...
متن کاملA nonconforming mixed finite element method for semilinear pseudo-hyperbolic partial integro-differential equations
In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given. Keywords—Pseudo-hyperbolic partial integro-differential equations; Nonconforming mixed eleme...
متن کاملA Mixed Finite Element Method for Nonlinear Diffusion Equations
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as ...
متن کاملNonconforming Mixed Finite Element Method for Time-dependent Maxwell’s Equations with ABC
In this paper, a nonconforming mixed finite element method (FEM) is presented to approximate time-dependent Maxwell’s equations in a three-dimensional bounded domain with absorbing boundary conditions (ABC). By employing traditional variational formula, instead of adding penalty terms, we show that the discrete scheme is robust. Meanwhile, with the help of the element’s typical properties and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics
سال: 2012
ISSN: 2152-7385,2152-7393
DOI: 10.4236/am.2012.33037